Impact of epigenetic regulation during bacterial infections

Authors

Keywords:

immune response, bacterial infections, epigenetics

Abstract

Epigenetics studies the mechanisms regulating the gene expression without altering the DNA sequence, which can be heritable, reversible, and influenced by the environment. Among these, epigenetic mechanisms such as chemical modifications in histones and the expression of micro RNAs (miRNAs) are important regulators of the immune response, since they can regulate and control the magnitude of the response during an infection. However, bacteria have established strategies that allow them to manipulate these epigenetic mechanisms, allowing them to evade the immune response, survive, and persist chronically in the host. This work focuses on the strategies used by bacteria to modulate the epigenetic mechanisms that allow them to evade the immune response and persist in the host. A better understanding of epigenetics in bacterial infections can establish new bases for the development of therapies that minimize the use of antibiotics.

Downloads

Download data is not yet available.

Author Biographies

Hortensia Patricia Cuéllar Mata, Departamento de Biología, Universidad de Guanajuato. Guanajuato, Guanajuato, México.

Profesora Investigadora C y Directora del Departamento de Biología, División de Ciencias Naturales y Exacatas, de la Universidad de Guanajuato. Desarrolla lineas de investigación en Inmunobiolgia, particualrmete evaluando el efecto de moleculas inmunomoduladores (ej. péptidos antimicrobianos , exosomas) sobre la respuesta inmune innata en la interacción hospedero.patógeno en modelos in vitro e in vivo de tricomionasis. Actualemnte es mienmbre del sisntema nacional de investigadors e investigadoras nivel 1, contando con el perfil PRODEP.

Marco Antonio Barajas Mendiola, Departamento de Biología, Universidad de Guanajuato. Guanajuato, Guanajuato, México.

Profesor Asociado

References

Elias, C., Nkengasong, J. N., y Qadri, F. (2021). Emerging Infectious Diseases - Learning from the Past and Looking to the Future. New England Journal of Medicine, 384(13), 1181-1184. https://doi.org/10.1056/nejmp2034517

Fol, M., Wodarczyk, M., y Druszczy ska, M. (2020). Host Epigenetics in Intracellular Pathogen Infections. International Journal of Molecular Sciences, 21(13). https://doi.org/10.3390/ijms21134573

Gray, A., y Sharara, F. (2022). Global and regional sepsis and infectious syndrome mortality in 2019: a systematic analysis. The Lancet Global Health, 10, S2. https://doi.org/10.1016/s2214-109x(22)00131-0

Instituto Nacional de Estadística y Geografía. INEGI. (2020). Instituto Nacional de Estadística y Geografía (INEGI). Inegi.org.mx. https://www.inegi.org.mx/

Kimura, M., Kothari, S., Gohir, W., Camargo, J. F., y Husain, S. (2023). MicroRNAs in infectious diseases: potential diagnostic biomarkers and therapeutic targets. Clinical Microbiology Reviews, 36(4), e0001523. https://doi.org/10.1128/cmr.00015-23

Morandini AC, Santos CF, Yilmaz Ö. Role of epigenetics in modulation of immune response at the junction of host-pathogen interaction and danger molecule signaling. Pathog Dis. 2016 Oct; 74(7):ftw082. doi:10.1093/femspd/ftw082. Epub 2016 Aug 18. https://doi.org/10.1093/femspd/ftw082

Noble, D. (2015). Conrad Waddington and the origin of epigenetics. Journal of Experimental Biology, 218(6), 816-818. https://doi.org/10.1242/jeb.120071

Rajeev, R., Dwivedi, A. P., Sinha, A., Agarwaal, V., Dev, R. R., Kar, A., y Khosla, S. (2021). Epigenetic interaction of microbes with their mammalian hosts. Journal of Biosciences, 46(4). https://doi.org/10.1007/s12038-021-00215-w

Rao, M., Valentini, D., Zumla, A., y Maeurer, M. (2018). Evaluation of the efficacy of valproic acid and suberoylanilide hydroxamic acid (vorinostat) in enhancing the effects of first-line tuberculosis drugs against intracellular Mycobacterium tuberculosis. International Journal of Infectious Diseases, 69, 78-84. https://doi.org/10.1016/j.ijid.2018.02.021

Song, Y., Zhang, H., Yang, X., Shi, Y., y Yu, B. (2022). Annual review of lysine-specific demethylase 1 (LSD1/KDM1A) inhibitors in 2021. European Journal of Medicinal Chemistry, 228, 114042. https://doi.org/10.1016/j.ejmech.2021.114042

Walsh, T. R., Ana Cristina Gales, Ramanan Laxminarayan, y Dodd, P. C. (2023). Antimicrobial Resistance: Addressing a Global Threat to Humanity. Antimicrobial Resistance: Addressing a Global Threat to Humanity, 20(7), e1004264-e1004264. https://doi.org/10.1371/journal.pmed.1004264

Wang, X., Yu, D., y Lu, C. (2023). Antimicrobial resistance and mechanisms of epigenetic regulation. Frontiers in Cellular and Infection Microbiology, 13. https://doi.org/10.3389/fcimb.2023.1199646

Yao, Q., Chen, Y., y Zhou, X. (2019). The roles of microRNAs in epigenetic regulation. Current Opinion in Chemical Biology, 51, 11-17. https://doi.org/10.1016/j.cbpa.2019.01.024

Zhang, Q., y Cao, X. (2019). Epigenetic regulation of the innate immune response to infection. Nature Reviews Immunology, 19(7), 417-432. https://doi.org/10.1038/s41577-019-0151-6

Published

2025-11-27

How to Cite

Cuéllar Mata, H. P., & Barajas Mendiola, M. A. (2025). Impact of epigenetic regulation during bacterial infections. Milenaria, Ciencia Y Arte, (26), 33–35. Retrieved from http://www.milenaria.umich.mx/ojs/index.php/milenaria/article/view/551

Issue

Section

Artículos