“Antimicrobial uses of usnic acid: A natural alternative”

Authors

DOI:

https://doi.org/10.35830/mcya.vi26.598

Keywords:

Usnic acid, Antimicrobial agents, Bacterial resistance

Abstract

Usnic acid, a natural compound produced by lichens, has attracted increasing interest in the scientific community due to its antimicrobial, antioxidant and antiviral properties. This substance works by inhibiting the growth of bacteria, including antibiotic-resistant strains, and has shown potential in the treatment of viral infections such as those caused by the SARS-CoV-2 virus. Furthermore, its antioxidant capacity allows it to protect cellular DNA, which suggests applications in the prevention of chronic diseases. However, usnic acid is not without limitations: its low water solubility and possible hepatotoxic effects represent significant challenges. This article explores the medical uses of usnic acid, its benefits, challenges and future prospects, highlighting the need for additional research to establish its safety and efficacy in humans. Despite the obstacles, usnic acid is emerging as a promising natural alternative for the development of new drugs used in the fight against resistant infections and viral diseases.

Downloads

Download data is not yet available.

References

Ávila-Zamora, S., Pinzon-Pérez, Y. y Acero-Godoy, J. (2023). Artículo de revisión. Ácido úsnico: alternativa potencial contra la resistencia bacteriana actual. Tecnología en Marcha. 36(3), 145-157. https://doi.org/10.18845/tm.v36i3.6183

Chen, S., Ren, Z., y Guo, L. (2025). Hepatotoxicity of usnic acid and underlying mechanisms. Journal of environmental science and health. Part C, Toxicology and carcinogenesis, 43(1), 1-22. https://doi.org/10.1080/26896583.2024.2366737

Filimonov, S., Yarovaya, I., Zaykovskaya, V., Rudometova, B., Shcherbakov, N., Chirkova, Y., Baev, S., Borisevich, S., Luzina, A., Pyankov, V., Maksyutov, R. y Salakhutdinov, F. (2022). (+)-Usnic Acid and Its Derivatives as Inhibitors of a Wide Spectrum of SARS-CoV-2 Viruses. Viruses, 14(10), 2154. https://doi.org/10.3390/v14102154

Gangwar, B., Kumar, S., Kumar, P., Pal, A., y Darokar, P. (2024). Mechanistic Insight into the Antimicrobial Mode of Action of Usnic Acid and Its Synergy with Norfloxacin against Methicillin Resistant Staphylococcus aureus. Preprints. https://doi.org/10.20944/preprints202407.2326.v1

Guo, L., Shi, Q., Fang, J. L., Mei, N., Ali, A. A., Lewis, S. M., Leakey, J. E., y Frankos, V. H. (2008). Review of usnic acid and Usnea barbata toxicity. Journal of environmental science and health. Part C, Environmental carcinogenesis & ecotoxicology reviews, 26(4), 317-338. https://doi.org/10.1080/10590500802533392

Herbarium. (S.F.). Cladonia spp (Cladoniaceae). https://www.plantasyhongos.es/herbarium/htm/Cladonia_spp.htm

Herbert, B. (S.F.). Old Man´s Beard Lichen. Shutterstock. https://www.shutterstock.com/es/image-photo/old-mans-beard-lichen-close552575908

Herrera, S. y Bruguera, M. (2008). Hepatotoxicidad inducida por el uso de hierbas y medicamentos para perder peso. Progresos en Hepatología. 31(7). 447-453. https://www.elsevier.es/es-revista-gastroenterologia-hepatologia-14-pdf-S0210570508756498

Hitendra, Y., Nayaka, S. y Dwivedi, M. (2021). Analytics on Antimicrobial Activity of Lichen Extract. J Pure Appl Microbiol. 15(2), 701-708. https://doi.org/10.22207/JPAM.15.2.21

Khan, F., Yu, H., y Kim, M. (2020). Bactericidal Activity of Usnic Acid-Chitosan Nanoparticles against Persister Cells of Biofilm-Forming Pathogenic Bacteria. Marine Drugs, 18(5), 270. https://doi.org/10.3390/md18050270

Kiliç, S., Kocakaya, Z., Karatoprak, ., lgün, S., y Ceylan, A. (2023). Analyzing the Impact of Ramalina digitellata, R. fastigiata, R. fraxinea, and R. polymorpha’s Usnic Acid Concentration on Antioxidant, DNA-Protective, Antimicrobial, and Cytotoxic Properties. Chemistry & biodiversity, 20(1), e202200816. https://doi.org/10.1002/cbdv.202200816

Maltezou, C., Horefti, E., Papamichalopoulos, N., Tseroni, M., Ioannidis, A., Angelakis, E., y Chatzipanagiotou, S. (2022). Antimicrobial Effectiveness of an Usnic-Acid-Containing Self Decontaminating Coating on Underground Metro Surfaces in Athens. Microorganisms, 10(11), 2233. https://doi.org/10.3390/microorganisms10112233

Nagaraju, B., Fathimunnisa, K., Vijayaraghavan, R. y Sreekanth, B. (2022). Antibacterial Activity of (+) Usnic Acid against Multi Drug Resistant Acinetobacter baumannii from Clinical Isolates. Indian Journal of Forensic Medicine & Toxicology, 16(1), 11. https://doi.org/10.37506/ijfmt.v16i1.17407

Oh, E., Wang, W., Park, K. H., Park, C., Cho, Y., Lee, J., Kang, E., y Kang, H. (2022). (+)-Usnic acid and its salts, inhibitors of SARS-CoV-2, identified by using in silico methods and in vitro assay. Scientific reports, 12(1), 13118. https://doi.org/10.1038/s41598-022-17506-3

Pérez, M. (2021). La pandemia silenciosa: resistencia bacteriana a los antibióticos. CEU Ediciones. https://www.researchgate.net/publication/363113312

Ruddell, S., Mostert, D. y Sieber Stephan. (2024). Target identification of usnic acid in bacterial and human cells. RSC Chem. Biol. 5, 617-621. https://doi.org/10.1039/D4CB00040D

Published

2025-11-27

How to Cite

Durán Baltazar, R. D. I., Gutiérrez Urbina, R., & Villagómez Rangel, J. J. (2025). “Antimicrobial uses of usnic acid: A natural alternative”. Milenaria, Ciencia Y Arte, (26), 12–14. https://doi.org/10.35830/mcya.vi26.598

Issue

Section

Artículos