From mushrooms to medicine: the rise of peptaiboles as potential treatments of the future

Authors

Keywords:

Peptaibol, antimicrobial peptide, antibiotics

Abstract

Peptaibols are small, naturally occurring peptides produced by filamentous fungi. To date, over 1,000 of these compounds have been identified. What distinguishes peptaibols is their unusual structure, as they contain nonproteinogenic amino acids, a type of amino acid that is not typically incorporated into proteins during ribosomal synthesis, unlike the 20 standard amino acids that the body uses to build proteins. With lengths ranging from 5 to 20 amino acids, these small peptides are primarily produced by fungi belonging to the genera Trichoderma, Hypocrea, Clonostachys, and Emericellopsis. These molecules have the ability to form pores in cell membranes, making them effective against bacteria, fungi, viruses, parasites, and even cancer cells. This broad range of biological effects makes them promising candidates for new antibiotic, anticancer, antiparasitic, and other treatments, with applications in medicine, agriculture, and biotechnology.

Downloads

Download data is not yet available.

References

Akbarian , M., Khani, A., Eghbalpour, S., & Uversky, V. N. (2022). Bioactive Peptides: Synthesis, Sources, Applications, and Proposed Mechanisms of Action. International Journal of Molecular Sciences, 23, 1445. https://doi.org/10.3390/ijms23031445.

Buda De Cesare, G., Cristy, S. A., Garsin, D. A., & Lorenz, M. C. (2020). Antimicrobial Peptides: a New Frontier in Antifungal Therapy. American Society for Microbiology, 11:e02123-20. https://doi.org/10.1128/mBio.

Casagrande, N., Borghese, C., Gabbatore, L., Morbiato, L., De Zotti, M., & Aldinucci, D. (2021). Analogs of a Natural Peptaibol Exert Anticancer Activity in Both Cisplatin- and Doxorubicin-Resistant Cells and in Multicellular Tumor Spheroids. International Journal of Molecular Sciences, 22, 8362. https://doi.org/10.3390/ijms22168362.

Das, S., Salah, K. B. H., Djibo, M., & Inguimbert, N. (2018). Peptaibols as a Model for the Insertions of Chemical Modifications. Archives of Biochemistry and Biophysics, 658, 16-30.

De Mandal, S., Panda, A. K., Murugan, C., Xu, X., Kumar, N. S., & Jin, F. (2021). Antimicrobial Peptides: Novel Source and Biological Function With a Special Focus on Entomopathogenic Nematode/Bacterium Symbiotic Complex. Frontiers in Microbiology, 12:555022. doi: 10.3389/fmicb.2021.555022.

Hermosa, R., Cardoza, R. E., Rubio, B. M., Gutiérrez, S., & Monte , E. (2014). Chapter 10 - Secondary Metabolism and Antimicrobial Metabolites of Trichoderma. Biotechnology and Biology of Trichoderma, Pp. 125-137 https://doi.org/10.1016/B978-0-444-59576-8.00010-2

Inostroza, A., Lara, L., Paz, C., Perez, A., Galleguillos, F., Hernandez, V., & Silva, M. (2018). Antibiotic activity of Emerimicin IV isolated from Emericellopsis minima from Talcahuano Bay, Chile. Natural Product Research, 32(11), 1361-1364.

Huan, Y., Kong, Q., Mou, H., & Yi, H. (2020). Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Frontiers in Microbiology, 11:582779 doi: 10.3389/fmicb.2020.582779.

Lee, J. W., Collins, J. E., Wendt, K. L., Chakrabarti, D., & Cichewicz, R. H. (2021). Leveraging Peptaibol Biosynthetic Promiscuity for Next-Generation Antiplasmodial Therapeutics. Journal of NAtural Products, 84, 503-517 https://dx.doi.org/10.1021/acs.jnatprod.0c01370.

Ma T, Liu Y, Yu B, Sun X, Yao H, Hao C, Li J, Nawaz M, Jiang X, Lao X, Zheng H. DRAMP 4.0: an open-access data repository dedicated to the clinical translation of antimicrobial peptides. Nucleic Acids Research, Volume 53, Issue D1, 6 January 2025, Pages D403-D410.

Maria-Neto, S., de Almeida, K. C., Macedo, M. L. R., & Franco, O. L. (2015). Understanding Bacterial Resistance To Antimicrobial Peptides: From The Surface To Deep Inside. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1848(11), 3078-3088.

Summers, MY, Kong, F., Feng, X., Siegel, MM, Janso, JE, Graziani, EI y Carter, GT (2007). Septocilindrinas A y B: Peptaiboles Producidos Por El Hongo Terrestre Septocylindrium sp. LL-Z1518. Revista De Productos Naturales, 70 (3), 391-396.

Süssmuth, R. D., & Mainz, A. (2017). Nonribosomal Peptide Synthesis - Principles and Prospects. Angewandte Chemie International - journal of the German Chemical Society, 56, 3770-3823 Doi:10.1002/ange.201609079.

Tornesello, AL, Borrelli, A., Buonaguro, L., Buonaguro, FM y Tornesello, ML (2020). Péptidos antimicrobianos como agentes anticancerígenos: Propiedades funcionales y actividades biológicas. Molecules , 25 (12), 2850. https://doi.org/10.3390/molecules25122850

Published

2025-11-27

How to Cite

Soria-Herrera, R. J., Olmedo-Monfil, V. G. ., & Cortés-Penagos, C. (2025). From mushrooms to medicine: the rise of peptaiboles as potential treatments of the future. Milenaria, Ciencia Y Arte, (26), 30–32. Retrieved from http://www.milenaria.umich.mx/ojs/index.php/milenaria/article/view/668

Issue

Section

Artículos