Lipid production from a microalgae consortium supplemented with porcine wastewater

Authors

  • Micael Gerardo Bravo Sánchez Departamento de Ingeniería Bioquímica e Ingeniería Ambiental, Tecnológico Nacional de México/Instituto Tecnológico de Celaya. Celaya, Guanajuato, México. https://orcid.org/0000-0003-3083-4172
  • Omar Surisadai Castillo Baltazar Departamento de Ingeniería en Biotecnología, Universidad de Guanajuato Campus Celaya-Salvatierra. Celaya, Guanajuato, México. https://orcid.org/0000-0002-2212-3736
  • Christian Ariel Cabrera Capetillo Departamento de Posgrado e Investigación, Tecnológico Nacional de México/Instituto Tecnológico de Celaya. Celaya, Guanajuato, México. https://orcid.org/0000-0003-4729-8038

Keywords:

Lipids, Simulation, Biorefinery

Abstract

Microalgae are microorganisms studied for the production of high value products due to their high content of proteins, lipids, carbohydrates and chlorophyll. In this work, the production of lipids from a consortium of Chlorella sp. is evaluated technically and economically, considering 18 scenarios for their production, 9 of them partially supplemented with swine wastewater. An area of 1 ha was considered for biomass cultivation, primary and secondary biomass collection, and lipid extraction. Through simulation in SuperPro Designer v10 software, consumption and production parameters were evaluated. The results show that the production cost is high, ranging from 836.9 US $/kg to 1131.5 US $/kg of lipids produced. The use of wastewater reduces the production cost by approximately 10%. The evaluation of technical and economic parameters allows the implementation of strategies to reduce production costs.

Downloads

Download data is not yet available.

References

Albarelli, J. Q.; Santos, D. T.; Ensinas, A. V.; Maréchal, F.; Cocero, M. J.; Meireles, M. A. (2018). Comparison of extraction tech-niques for product diversification in a supercritical water gasification-based sugarcane-wet microalgae biorefinery: Thermoeconomic and environmental analysis. Journal of Cleaner Production, 201, 697-705. doi:10.1016/j.jclepro.2018.08.137.

Aslam, A.; Fazal, T.; Zaman, Q.; Shan, A.; Rehman, F.; Iqbal, J.; Rashid, N.; Rehman, M. S. (2020). Chapter 13 - Biorefinery of Microalgae for Nonfuel Products, Editor(s): Abu Yousuf, Microalgae Cultivation for Biofuels Production. Academic Press, 197-209. doi: 10.1016/B978-0-12-817536-1.00013-8.

Bibi, F.; Jamal, A.; Huang, Z.; Urynowicz, M.; Ali, M. I. (2022). Advancement and role of abiotic stresses in microalgae biorefinery with a focus on lipid production. Fuel, 316, 123192. doi: 10.1016/j.fuel.2022.123192.

Cheirsilp, B.; Maneechote, W.; Srinuanpan, S.; Angelidaki, I. (2023). Microalgae as tools for bio-circular-green economy: Zero-waste approaches for sustainable production and biorefineries of microalgal biomass. Bioresource Technology. 387, 129620. doi: 10.1016/j.biortech.2023.129620.

Figueroa-Torres, G.M.; Theodoropoulos, C. (2023). Techno-economic analysis of a microalgae-based biorefinery network for biofuels and value-added products. Bioresource Technology Reports. doi:10.1016/j.biteb.2023.101524.

Kholssi, R.; Ramos, P.V.; Marks, E. A. N.; Montero, O.; Rad, C. (2021). Biotechnological uses of microalgae: A review on the state of the art and challenges for the circular economy. Biocatalysis and Agricultural Biotechnology, 36, 102114. doi:10.1016/j.bcab.2021.102114.

Menetrez, M. Y. (2012). An overview of algae biofuel production and potential environmental impact. Environmental science & technology, 46(13), 7073-7085. doi:10.1021/es300917r.

Safi, C.; Olivieri, G.; Campos, R. P.; Engelen-Smit, N.; Mulder, W. J.; van den Broek L. A. M.; Sijtsma, L. (2017). Biorefinery of microalgal soluble proteins by sequential processing and membrane filtration. Bioresource Technology, 225, 151-158. doi: 10.1016/j.biortech.2016.11.068.

Tambat, V. S.; Patel, A. K.; Singhania, R. R.; Vadrale, A. P.; Tiwari, A.; Chen, C. W.; Dong, C. D. (2023). Sustainable mixotrophic microalgae refinery of astaxanthin and lipid from Chlorella zofingiensis. Bioresource Technology, 387, 129635. doi:10.1016/j.biortech.2023.129635.

Vázquez-Romero, B.; Perales, J. A.; de Vree, J. H; Böpple, H.; Steinrücken, P.; Barbosa, M. J.; Kleinegris, D. M. M; Ruiz, J. (2022). Techno-economic analysis of microalgae production for aquafeed in Norway. Algal Research, 64, 102679. doi:10.1016/j.algal.2022.102679.

Wang, S.; Mukhambet, Y.; Esakkimuthu, S.; Abomohra, A. E. (2022). Integrated microalgal biorefinery – Routes, energy, eco-nomic and environmental perspectives. Journal of Cleaner Production, 2022, 348, 131245. doi:10.1016/j.jclepro.2022.131245.

Wayne-Chew, K.; Ying-Yap, J.; Loke-Show, P.; Hui-Suan, N.; Ching-Juan, J.; Chuan-Ling, T.; Lee, D. J.; Chang, J. S. (2017). Microalgae biorefinery: high value products perspectives. Bioresource Technology. doi:10.1016/j.biortech.2017.01.006.

Yen, H. W.; Hu, I. C.; Chen, C. Y.; Ho, S. H.; Lee, D. J.; Chang, J. S. (2012). Microalgae-based biorefinery – From biofuels to natural products. Bioresource Technology. doi:10.1016/j.biortech.2012.10.099.

Published

2025-11-27

How to Cite

Bravo Sánchez, M. G., Castillo Baltazar, O. S., & Cabrera Capetillo, C. A. (2025). Lipid production from a microalgae consortium supplemented with porcine wastewater. Milenaria, Ciencia Y Arte, (26), 44–47. Retrieved from http://www.milenaria.umich.mx/ojs/index.php/milenaria/article/view/597

Issue

Section

Artículos